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Abstract
In 1960 Schwinger (J Schwinger 1960 Proc. Natl Acad. Sci. 46 570–9) proposed
the algorithm for factorization of unitary operators in the finite M-dimensional
Hilbert space according to a coprime decomposition of M. Using a special
permutation operator A we generalize the Schwinger factorization to every
decomposition of M. We obtain the factorized pairs of unitary operators and
show that they obey the same commutation relations as Schwinger’s. We apply
the new factorization to two problems. First, we show how to generate two
kq-like mutually unbiased bases for any composite dimension. Then, using
a Harper-like Hamiltonian model in the finite dimension M = M1M2, we
show how to design a physical system with M1 energy levels, each having
degeneracy M2.

PACS numbers: 03.65.−w, 02.20.Df, 02.30.Nw, 71.70.−d

1. Introduction

A finite phase space of dimension M, where coordinate and momentum have M possible
values, is a frequent component of various physical and mathematical problems. Fast Fourier
transform (FFT) [1, 2], Schwinger factorization of unitary operators [3], generation of kq bases
and finite-dimensional Harper-like Hamiltonians [4] are the problems related to finite phase
space that will be considered in this paper. A recent review of various quantum systems with
finite Hilbert space can be found in [5].

Originally studied by Weyl [6], the finite-dimensional Hilbert space was systematized by
Schwinger in terms of ‘unitary operator bases’ [3]. Schwinger considered an M-dimensional
physical system. Such a Hilbert space can be achieved by application of the following
boundary conditions on the wavefunction ψ(x) and its Fourier transform �(p) [7]:

ψ(x) = ψ(x + Mc), �(p) = �

(
p +

2πh̄

c

)
, (1.1)
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where c is a length unit. In what follows, we will assume c = 1. As a consequence of the
above boundary conditions x and p have a finite discrete spectrum of eigenvalues

x = 0, 1, . . . ,M − 1; p = 2πh̄

M
· {0, 1, . . . , M − 1}. (1.2)

Using unitary operators U and V ([4] with c = 1){
U = eix̂ 2π

M ,

V = e
i
h̄
p̂,

(1.3)

the complete orthogonal operator basis of M2 operators can be defined as [3]

UkV n; k, n = 0, 1, . . . , M − 1. (1.4)

The above operators have the commutation relation

V nUk = UkV n e
2π i
M

nk. (1.5)

For a coprime decomposition of M = M1M2, using the Fermat–Euler theorem, Schwinger
showed how to factorize the unitary operators. The Fermat–Euler theorem states that if M1

and M2 are coprime, then there exist unique N1 and N2 such that

M1N2 = 1 (mod M2), M2N1 = 1 (mod M1). (1.6)

Therefore, the two pairs of unitary operators defined as{
U1 = UM2 ,

V1 = V M2N1 ,

{
U2 = UM1 ,

V2 = V M1N2 ,
(1.7)

behave as independent complementary operators of factorized dimensions M1 and M2. The
respective commutation relations are

V
ni

i U
ki

i = U
ki

i V
ni

i e
2π i
Mi

niki , i = 1, 2; (1.8)

V
ni

i U
kj

j = U
kj

j V
ni

i , i �= j, i, j = 1, 2. (1.9)

Each unitary operator on the M-dimensional space (equation (1.4)) can be considered
as two operators from the factorized dimensions M1 and M2. This is due to the one-to-one
‘Sino-Ruritanian’ correspondences [8]:

n = n1M2N1 + n2M1N2 (mod M),

k = k1M2 + k2M1 (mod M).
(1.10)

Therefore, for every power n of the operator V we can find the unique representation
by the factorized unitary operators V1 and V2. The appropriate powers n1 and n2 of the
factorized operators V1 and V2 are determined by the first ‘Sino-Ruritanian’ correspondence
(equation (1.10)). Similarly, the correspondence between U and (U1, U2) is determined by
the second ‘Sino-Ruritanian’ correspondence (equation (1.10)). Another recent factorization
construction based on the Chinese remainder theorem (CRT) can be found in [5].

After we have obtained factorization of the M-dimensional Hilbert space into its coprime
sub-dimensions M1 and M2, we can apply it to the kq bases generation and the Harper-like
Hamiltonian model. Let us first consider the kq bases generation. The factorized operators
from equation (1.7) can be used for generation of the following two pairs of operators (note
that V

M1
2 = V M1 and V

M2
1 = V M2 ):

(a)

⎧⎪⎨⎪⎩τ

(
2π

a

)
= eix̂ 2π

a = UM2;

T (a) = e
i
h̄
p̂a = V M1;

(b)

⎧⎪⎨⎪⎩τ

(
2π

b

)
= eix̂ 2π

b = UM1;

T (b) = e
i
h̄
p̂b = V M2 ,

(1.11)
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where the dimension M = M1M2 and a = M1, b = M2 (according to the notation of [4]
with c = 1). Hence, by employing all possible powers, each pair of operators (a) and (b)
forms a complete set of M commuting operators and thus generates an alternative kq basis for
treatment of the M-dimensional Hilbert space. We have two such bases:

(a) |k, q〉 = 1√
M2

M2−1∑
s=0

eiksa|q + sa〉,

(a)

⎧⎨⎩k = 2π

M
f, f = 0, . . . , M2 − 1,

q = 0, . . . ,M1 − 1,

(b) |K,Q〉 = 1√
M1

M1−1∑
t=0

eiKtb|Q + tb〉

(b)

⎧⎨⎩K = 2π

M
f ′, f ′ = 0, . . . ,M1 − 1,

Q = 0, . . . ,M2 − 1.

(1.12)

The unique property of the kq bases is that they are eigenfunctions of both space and momentum
displacement operators. These functions have partial knowledge about both position and
momentum, whose precise simultaneous knowledge is limited by the non-commutation of
the corresponding operators. In the case of dimension M = M1M2 factorizable to coprime
numbers M1 and M2, the two kq bases (a) and (b) are mutually unbiased bases (MUB) [4]. The
MUB property of the bases means that if the physical system is found in one of the states of
one MUB (for example set (a)), then it has equal probabilities to be in all the states of the other
MUB (set (b) in our example). Mathematically, the mutual unbiasedness of the two kq bases
means the following equality: |〈k, q|K,Q〉|2 = 1

M
. For non-coprime M1 and M2 the MUB

property is violated. For example, if M1 = m1r and M2 = m2r have a common multiple r,
we have

〈k, q|K,Q〉 = 1√
M

∑
t,s

e−iksa eiKtb〈sm1r + q|tm2r + Q〉. (1.13)

The product 〈sm1r + q|tm2r + Q〉 equals unity for the solution of the following modular
equation:

sm1r + q − tm2r − Q = 0 (mod M). (1.14)

Following ([9], p 45, theorem ‘d’), the above equation can be taken modulo r:

q = Q (mod r). (1.15)

Therefore, for q0 = 0 and Q0 = 1 (which is always possible according to the ranges of values
equation (1.12)) we have |〈k, q0|K,Q0〉|2 = 0 �= 1

M
.

To complete the introduction to kq MUB we note their quasi-periodic properties:

(a)

∣∣∣∣k +
2π

M1
, q

〉
= |k, q〉, |k, q + M1〉 = e−ika|k, q〉,

(b)

∣∣∣∣K +
2π

M2
,Q

〉
= |K,Q〉, |K,Q + M2〉 = e−iKb|K,Q〉.

(1.16)

Now, let us consider Harper-like Hamiltonians. They are defined as Hamiltonians of one
degree of freedom periodic both in coordinate and momentum [10]. For our discussion we are
interested in the use of Harper-like Hamiltonians for the energy spectra design considered in
[4]. The energy spectra design is a direct consequence of the factorization of the M = M1M2-
dimensional Hilbert space to coprime constituents M1 and M2. In the original version [4] one
considered a Harper-like Hamiltonian H

[
T (b), τ

(
2π
a

)]
which is a function of the two operators

T (b) and τ
(

2π
a

)
from equation (1.11). It is important that the Hamiltonian H

[
T (b), τ

(
2π
a

)]
is a function of the operators V1 and U1 (due to T (b) = V

M2
1 and τ

(
2π
a

) = U1); in such a
case only the M1-dimensional subspace is affected by the Hamiltonian. The M2-dimensional
subspace is untouched by the Hamiltonian. Hence, considering H

[
T (b), τ

(
2π
a

)]
we expect to

3
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obtain M1 energy levels (with a spectrum determined by the details of the Hamiltonian) each
of which is degenerate M2 times.

The aim of this paper is first to extend the Schwinger factorization to non-coprime M1 and
M2. Then the other two applications, the kq-like MUB generation and the energy spectra design
by Harper-like Hamiltonian, are extended correspondingly. For that purpose, in section 2, we
define the permutation operator A, based on the previous study by Cooley and Tukey of fast
Fourier transform (FFT) [2]. Using the operator A we obtain pairs of unitary operators, which
have commutation relations as in equations (1.8) and (1.9). In section 3 we use the new
factorized unitary pairs to generate two kq-like MUB. New quasi-periodicity properties are
obtained in one of the bases. In section 4 we apply the new factorization to the energy spectra
design using Harper-like Hamiltonians without any restriction on the factors M1 and M2 of the
dimension M = M1M2. Section 5 includes a discussion and summary.

2. Factorization of unitary operators using the permutation operator A

To define the permutation operator A we start by recalling the division algorithm theorem
(DAT) from number theory.

The theorem states ([9] page 2 or [11] page 3) that for any integer numbers D and d
with d > 0, there exists a unique pair of integer numbers q and r satisfying the following
conditions:

(a) D = d · q + r,

(b) 0 � r < d.
(2.1)

Consider the special case of positive integer D in the range [0, 1, . . . , M1M2 − 1] and
positive d = M2. In this case there is a unique pair of integers q and r satisfying the following
conditions:

(a) q ∈ [0, 1, . . . , M1 − 1],
(b) r ∈ [0, 1, . . . , M2 − 1],
(c) D = M2 · q + r.

(2.2)

For our discussion, this DAT-based special representation of the numbers modulo M = M1M2

is the crucial component.
In 1965 Cooley and Tukey [2] introduced an FFT algorithm not limited to the coprime

factorization of M = M1M2. They used two complementary DAT-based representations for
the x and p variable indices,{

n = n1M2 + n2,

k = k1 + k2M1,
(2.3)

which enabled them to simplify the discrete Fourier transform (DFT) calculation (wM = e
2πi
M ):

pk = 1√
M

M−1∑
n=0

xnw
nk
M = 1√

M

M−1∑
n=0

xnw
(n1M2+n2)(k1+k2M1)
M

= 1√
M2

M2−1∑
n2=0

w
n2(k1+k2M1)
M

1√
M1

M1−1∑
n1=0

xnw
n1k1M2
M . (2.4)

The two summations in the last line of the above formula require M · ∑2
i=1 Mi operations

instead of M2 operations by direct calculation [2].
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Table 1. DAT representation of x = (x1, x2).

x 0 1 2 3 4 5

x1 0 1 0 1 0 1
x2 0 0 1 1 2 2

Table 2. DAT representation of x = (x′
1, x

′
2).

x 0 1 2 3 4 5

x ′
1 0 0 0 1 1 1

x ′
2 0 1 2 0 1 2

Following Cooley and Tukey, we define a permutation operator A, which acts in the finite
M-dimensional Hilbert space:

A =
M1−1∑
x1=0

M2−1∑
x2=0

|x2 + M2x1〉〈x1 + M1x2|. (2.5)

For the construction of the operator A we used two DAT-based representations, as in
equation (2.3), applied to the coordinate states |x〉. In the coordinate representation our
operator is equal to the stride permutation matrix widely used in signal processing [12]. For
a simple illustration, let us consider the example of dimension M = 6, where M1 = 2 and
M2 = 3. Table 1 shows the correspondence between the numbers x = 0, 1, 2, 3, 4, 5 and
pairs of numbers (x1 = 0, 1; x2 = 0, 1, 2) according to the rule x = x1 + M1x2. With the rule
x = x ′

1M2 + x ′
2 we have another table (table 2).

Consequently, the permutation matrix A corresponding to equation (2.5) (using the
standard basis for |x〉) is

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (2.6)

Also, it can be written in a compact way as the permutation A = (0)(1, 3, 4, 2)(5). This
means that A leaves the coordinate states |0〉 and |5〉 unchanged, |1〉 goes into |3〉, |3〉 goes
into |4〉, |4〉 goes into |2〉 and |2〉 goes into |1〉. We note that the operator A is unitary:

AA† = I. (2.7)

With the permutation operator A at hand, we can define the new factorization. To do
this we use the pairs of operators from equation (1.11), whose definition includes a general
factorization of M = M1M2. We modify the (a) set of operators by the permutation operator
A of equation (2.5), and for convenience relabel all the operators:

(a′)

⎧⎪⎨⎪⎩Ũ1 = τ ′
(

2π

a

)
= Aτ

(
2π

a

)
A† = AUM2A†;

Ṽ2 = T ′(a) = AT (a)A† = AV M1A†;
(b)

⎧⎪⎨⎪⎩Ũ2 = τ

(
2π

b

)
= eix̂ 2π

b = UM1;

Ṽ1 = T (b) = e
i
h̄
p̂b = V M2 .

(2.8)

5
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The tilde denotes the new version of operators. The (a′) and (b) sets of operators replace
the Schwinger operators of equation (1.7). As we will show shortly, they obey all the
commutation relations (equations (1.8) and (1.9)) of factorized operators. Therefore, the (a′)
and (b) sets of operators define the new factorization, not restricted to coprime decomposition.
The commutation relation (1.9) is fulfilled by the tilde operators (equation (2.8)) due to the
unitarity property of A. For the commutation relation (1.8) we first calculate the operation of
AUM2A† and A†UM1A on coordinate states:

AUM2A†|x〉 = AUM2A†|x1M2 + x2〉 = AUM2 |x1 + M1x2〉
= e

2π i
M1

x1A|x1 + M1x2〉 = e
2π i
M1

x1 |x1M2 + x2〉; (2.9)

A†UM1A|x〉 = A†UM1A|x ′
1 + M1x

′
2〉 = A†UM1 |x ′

1M2 + x ′
2〉

= e
2π i
M2

x ′
2A†|x ′

1M2 + x ′
2〉 = e

2π i
M2

x ′
2 |x ′

1 + M1x
′
2〉, (2.10)

where the only difference in the above calculations is that we used different DAT-based
representations for the x values. Using the above expressions one can prove

Ṽ
n1

1 Ũ
k1
1 |x〉 = V M2n1AUM2k1A†|x1M2 + x2〉 = e

2π i
M1

k1x1V M2n1 |x1M2 + x2〉
= e

2π i
M1

k1x1 |(x1 − n1)M2 + x2〉, (2.11)

whereas applying Ũ
k1
1 Ṽ

n1
1 we get

Ũ
k1
1 Ṽ

n1
1 |x〉 = AUM2k1A†V M2n1 |x1M2 + x2〉 = AUM2k1A†|(x1 − n1)M2 + x2〉

= e
2π i
M1

k1(x1−n1)|(x1 − n1)M2 + x2〉. (2.12)

Similar results can be shown for the operators Ṽ
n2

2 and Ũ
k2
2 . Summarizing the results, the

commutation relation (equation (1.8)) is fulfilled:

Ṽ
ni

i Ũ
ki

i = Ũ
ki

i Ṽ
ni

i e
2π i
Mi

niki , i = 1, 2. (2.13)

Therefore, using the permutation operator A we obtained the new factorization of the unitary
operators, which is not limited to coprime decomposition of M. Here we used the permutation
operator A for the transformation of the (a) set of operators to the new (a′) set for the
factorization. Obviously we could have applied the transformation to the (b) set, which would
have also enabled the factorization.

In the particular case of M1 = M2 (a = b), the two kq bases (1.12) are identical, and so are
the two (a) and (b) sets of operators in equation (1.11), and the permutation operator A from
equation (2.5) satisfies A2 = I . In this case we have only one set of kq operators and only
one |k, q〉 basis. Application of the permutation operator A to that set of operators defines the
tilde set, which obeys the proper commutation relations with the original set (equations (1.8)
and (1.9)). Their respective eigenstates (obtained by applying A to the unique |k, q〉 basis) are
MUB with respect to the original |k, q〉 states. (See also the next example and the treatment
of Harper-like Hamiltonians for M = 4 = 22 in section 4.)

The permutation operator A, based on the analogy to the Cooley and Tukey FFT, solves
the unitary operator factorization. To acquire some physical intuition about the operator A,
let us consider the example of dimension M = 4, where M1 = M2 = 2. In this case, the
operators from equation (1.11) in the coordinate representation may be presented as

(a)

⎧⎪⎪⎨⎪⎪⎩U 2 =

⎛⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞⎟⎟⎠ , V 2 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞⎟⎟⎠ . (2.14)

6
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The sets (a) and (b) of operators in equation (1.11) are identical in our example. To get the
second set of factorized operators we write the (a′) set from equation (2.8):

(a′)

⎧⎪⎪⎨⎪⎪⎩AU 2A† =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎠ , AV 2A† =

⎛⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠ , (2.15)

where the permutation operator in the coordinate representation is given by the permutation
A = (0)(1, 2)(3). The operator U2 has two eigenvalues (1 and −1), and the operator V2

permutes between the vectors with the same eigenvalue (1 or −1). This is why the operator
U2 commutes with the operator V2. Permutation by the operator A turns the operator U2 into
the operator AU 2A†, which anticommutes with V2. The operators AU 2A† and V2 form a
complementary pair of operators for sub-dimension M1 = 2, where their anticommutation is
consistent with equation (1.8). The operators U2 and AV 2A† form another complementary
pair of operators for sub-dimension M2 = 2. The operator A permutes the eigenvalues of U2

in such a way as to make the operator V2 anticommute with AU 2A†.
A more interesting example is dimension M = 12, where both coprime and non-coprime

factorizations are possible. For the case of M1 = 2 and M2 = 6, using the coordinate
representation, the permutation operator is

A = (0)(1, 6, 3, 7, 9, 10, 5, 8, 4, 2)(11).

In the other case, where M1 = 3 and M2 = 4, the permutation operator is

A = (0)(1, 4, 5, 9, 3)(2, 8, 10, 7, 6)(11).

In both cases the construction of the operators from equation (2.8) leads to the factorized
pairs of operators. The generality of the new factorization enables us to perform it for every
factorized numbers M1 and M2. In the case where M1 or M2 are composite numbers, another
factorization can be performed until we reach prime numbers in factorization.

Note that Schwinger’s solution for non-coprime factorization in [3] gives the factorized
pairs of operators (see also [13]), which obey the commutation relations of equations (1.8)
and (1.9). However, while for the coprime factorization an explicit expression is given in
[3] connecting between the factorized pairs and the original operators U and V, no such
expression is given for the non-coprime case. In our paper this explicit expression is given in
equation (2.8).

3. New kq-like bases

Each set (a′) and (b) of operators (equation (2.8)) generates M commuting operators and can be
used for the definition of a basis for the M-dimensional Hilbert space. The set (b) of operators
has, as an eigenbasis, the |K,Q〉 basis. As a result of the unitary transformation of the (a) set,
the (a′) set defines the kq-like basis ˜|k, q〉 as follows:

(a′) ˜|k, q〉 = A|k, q〉 = 1√
M2

M2−1∑
s=0

eiksa|s + qM2〉,

(a′)

⎧⎨⎩k = 2π

M
f, f = 0, . . . ,M2 − 1,

q = 0, . . . ,M1 − 1.

(3.1)

7
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As a result of the fact that the two sets of operators (Ṽ1, Ũ1) and (Ṽ2, Ũ2) describe M1 and M2

subspaces in the entire M-dimensional Hilbert space, the bases |k̃, q〉 and |K,Q〉 are mutually
unbiased. Let us check the overlap between |k̃, q〉 and |K,Q〉 states (a = M1, b = M2):

〈k̃, q|K,Q〉 = 1√
M1

1√
M2

M2−1∑
s=0

M1−1∑
t=0

e−iksa eiKtb〈s + qM2|Q + tb〉. (3.2)

Inserting (a = M1, b = M2) we have

= 1√
M

M2−1∑
s=0

M1−1∑
t=0

e−iksM1 eiKtM2〈s + qM2|Q + tM2〉

= 1√
M

M2−1∑
s=0

M1−1∑
t=0

e−iksM1 eiKtM2δM1(s − Q)δM2(q − t)

= 1√
M

e−ikQM1 eiKqM2 .

(3.3)

Here δMi (x−x0) means that the argument of the delta function is taken modulo Mi, δMi (0) = 1
and elsewhere is zero. Therefore, these bases are mutually unbiased: |〈k̃, q|K,Q〉|2 = 1

M
.

We call the basis |k̃, q〉 a kq-like basis because it is not an eigenfunction of the same operators
as the |k, q〉 basis, but of the operators related to them by the permutation transformation.
In addition, it has different periodicity properties. As |k̃, q〉 is defined, it has the completely
periodic property:

(a′)

∣∣∣∣∣ ˜

k +
2π

M1
, q

〉
= | ˜k, q + M1〉 = |k̃, q〉. (3.4)

To show explicitly the difference and similarity between the bases |k̃, q〉 and |k, q〉 we
consider an example of dimension M = 6 with M1 = 3 and M2 = 2. Using the |x〉
representation we list in three columns all basis members of |k, q〉 on the left-hand side, all
|k̃, q〉 basis vectors in the middle and |K,Q〉 on the right-hand side:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|(0, 0)〉 = 1√
2
(|0〉 + |3〉),

|(0, 1)〉 = 1√
2
(|1〉 + |4〉),

|(0, 2)〉 = 1√
2
(|2〉 + |5〉),

|(1, 0)〉 = 1√
2
(|0〉 − |3〉),

|(1, 1)〉 = 1√
2
(|1〉 − |4〉),

|(1, 2)〉 = 1√
2
(|2〉 − |5〉),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

| ˜(0, 0)〉 = 1√
2
(|0〉 + |1〉),

| ˜(0, 1)〉 = 1√
2
(|2〉 + |3〉),

| ˜(0, 2)〉 = 1√
2
(|4〉 + |5〉),

| ˜(1, 0)〉 = 1√
2
(|0〉 − |1〉),

| ˜(1, 1)〉 = 1√
2
(|2〉 − |3〉),

| ˜(1, 2)〉 = 1√
2
(|4〉 − |5〉),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|(0, 0)〉 = 1√
3
(|0〉 + |2〉 + |4〉),

|(0, 1)〉 = 1√
3
(|1〉 + |3〉 + |5〉),

|(1, 0)〉 = 1√
3

(|0〉 + e
2π i
3 |2〉 + e

4π i
3 |4〉),

|(1, 1)〉 = 1√
3

(|1〉 + e
2π i
3 |3〉 + e

4π i
3 |5〉),

|(2, 0)〉 = 1√
3

(|0〉 + e
4π i
3 |2〉 + e

2π i
3 |4〉),

|(2, 1)〉 = 1√
3

(|1〉 + e
4π i
3 |3〉 + e

2π i
3 |5〉).

(3.5)

8



J. Phys. A: Math. Theor. 43 (2010) 045301 B Simkhovich et al

Hence, the |k̃, q〉 and |k, q〉 bases are neither equal nor orthogonal to one another (they are
eigenfunctions of different sets of operators). Nevertheless, both these bases are mutually
unbiased to the |K,Q〉 basis in this coprime case.

4. Engineering of the energy spectrum using the permutation operator A in
Harper-like Hamiltonians

The new factorized pairs of operators
(
T ′(a), τ

(
2π
b

))
and

(
T (b), τ ′( 2π

a

))
(equation (2.8))

describe M2- and M1-dimensional subspaces, respectively [3]. Therefore, replacing the
Harper-like Hamiltonian H

[
T (b), τ

(
2π
a

)]
of [4] by H

[
T (b), τ ′( 2π

a

)]
we should obtain M1

energy levels, each of which is degenerate M2 times, without restriction for M2 and M1 to be
coprime.

To show the advantage of the new factorization, we compare it with the energy spectra
design method of [4]. As a first example, let us consider the dimension M = 6. We choose
the simple Harper-like Hamiltonian proposed in [4]:

H = H

(
T (b), τ

(
2π

a

))
= V1 cos

(
b

h̄
p̂

)
+ V2 cos

(
2π

a
x̂

)
, (4.1)

where V1 and V2 are constants. We solve this Hamiltonian using the kq-representation:

|ψ〉 =
∑
k,q

|k, q〉〈k, q|ψ〉 =
∑
k,q

Ck,q |k, q〉. (4.2)

The resulting eigenvalue equation for our Hamiltonian is[
V1 cos

(
b

h̄
p̂

)
+ V2 cos

(
2π

a
x̂

)] ∑
k,q

Ck,q |k, q〉 = ε
∑
k,q

Ck,q |k, q〉. (4.3)

After applying the operators we have∑
k,q

Ck,q

[
V1

2
(|k, q − b〉 + |k, q + b〉) + V2 cos

(
2π

a
q

)
|k, q〉

]
= ε

∑
k,q

Ck,q |k, q〉. (4.4)

The above eigenvalue equation can be solved for each value of k = 2π
M

f independently. So
for our particular choice of dimension M = 6 with M1 = a = 2 and M2 = b = 3, performing
the summation over q values with the use of the quasi-periodicity property of the |k, q〉 states,
we obtain the following equation (for some particular k value):

Ck,0

[
V1

2
(e4ki|k, 1〉 + e−2ki|k, 1〉) + V2 cos

(
2π

2
· 0

)
|k, 0〉

]
+ Ck,1

[
V1

2
(e2ki|k, 0〉 + e−4ki|k, 0〉) + V2 cos

(
2π

2
· 1

)
|k, 1〉

]
= ε[Ck,0|k, 0〉 + Ck,1|k, 1〉]. (4.5)

Using the orthogonality of the |k, q〉 states the above equation is equivalent to the solution of
the following M1 = 2 coupled equations:(

V2 V1 e− 2π i
6 4f

V1 e
2π i
6 4f −V2

) (
Ck,0

Ck,1

)
= ε

(
Ck,0

Ck,1

)
. (4.6)

The energy spectrum ε is

ε1,2 = ±
√

V 2
1 + V 2

2 , (4.7)

9
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which is f independent and therefore each energy level is threefold degenerate (note that for
current example f = {0, 1, 2} and k = 2π

6 f ). The relation between the coefficients is

Ck,0 = V1 e− 2π i
6 4f

ε − V2
Ck,1 or equally Ck,1 = V1 e

2π i
6 4f

ε + V2
Ck,0. (4.8)

On the other hand, if instead of coprime factorized M = 6 we choose M = 4 and
substitute M1 = a = 2 and M2 = b = 2 into equation (4.4), we get equation (4.9) with
non-degenerate energy spectrum:∑
k,q

Ck,q

[
V1

2
(|k, q − 2〉 + |k, q + 2〉) + V2 cos

(
2π

2
q

)
|k, q〉

]
= ε

∑
k,q

Ck,q |k, q〉. (4.9)

Using the quasi-periodicity properties of |k, q〉 states we have∑
k,q

Ck,q[V1 cos(2k)|k, q〉 + V2 cos

(
2π

2
q

)
|k, q〉] = ε

∑
k,q

Ck,q |k, q〉, (4.10)

and the energy spectrum is

ε1,2,3,4 = ±V1 ± V2. (4.11)

This result is expected, because of the absence of factorization into sub-dimensions M1 = 2
and M2 = 2 using the operators of equation (1.11).

Let us now follow the same procedure with the new operators of equation (2.8).
Accordingly, the Harper-like Hamiltonian of equation (4.1) changes to

H = H

(
T (b), τ ′

(
2π

a

))
= V1 cos

(
b

h̄
p̂

)
+ V2A cos

(
2π

a
x̂

)
A†. (4.12)

To compare the two schemes we solve the above Hamiltonian using the k̃q-representation:

|ψ〉 =
∑
k,q

|k̃, q〉〈k̃, q|ψ〉 =
∑
k,q

C̃k,q |k̃, q〉. (4.13)

The eigenvalue equation for our Hamiltonian is[
V1 cos

(
b

h̄
p̂

)
+ V2A cos

(
2π

a
x̂

)
A†

] ∑
k,q

C̃k,q |k̃, q〉 = ε
∑
k,q

C̃k,q |k̃, q〉. (4.14)

After applying the operators we have∑
k,q

C̃k,q

[
V1

2
(| ˜k, q − 1〉 + | ˜k, q + 1〉) + V2 cos

(
2π

a
q

)
|k̃, q〉

]
= ε

∑
k,q

C̃k,q |k̃, q〉, (4.15)

where we have used the two relations:

T (b)|k̃, q〉 = | ˜k, q − 1〉 and τ ′
(

2π

a

)
|k̃, q〉 = e

2π i
a

q |k̃, q〉.

As before, the eigenvalue equation (4.15) can be solved for each value of k independently, and
using the complete periodicity property of |k̃, q〉 we have (with M1 = a = 2 and M2 = b = 3)

C̃k,0

[
V1

2
(|k̃, 1〉 + |k̃, 1〉) + V2 cos

(
2π

2
· 0

)
|k̃, 0〉

]
+ C̃k,1

[
V1

2
(|k̃, 0〉 + |k̃, 0〉) + V2 cos

(
2π

2
· 1

)
|k̃, 1〉

]
= ε[C̃k,0|k̃, 0〉 + C̃k,1|k̃, 1〉]. (4.16)
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In matrix form the above equation reads(
V2 V1

V1 −V2

) (
C̃k,0

C̃k,1

)
= ε

(
C̃k,0

C̃k,1

)
. (4.17)

Hence, we get the same spectrum of energies as before, with each level being threefold
degenerate:

ε1,2 = ±
√

V 2
1 + V 2

2 , (4.18)

and a new relation between the coefficients

C̃k,0 = V1

ε − V2
C̃k,1 or equally C̃k,1 = V1

ε + V2
C̃k,0. (4.19)

In the case of M = 4, solving equation (4.15) with M1 = a = 2 and M2 = b = 2, we
have∑
k,q

C̃k,q

[
V1

2
(| ˜k, q − 1〉 + | ˜k, q + 1〉) + V2 cos

(
2π

2
q

)
|k̃, q〉

]
= ε

∑
k,q

C̃k,q |k̃, q〉. (4.20)

As a result of the k independence of the equation above it is equivalent to the eigenvalue
equation considered for dimension M = 6. Therefore, (as one can easily check) we have to
solve the matrix equation(

V2 V1

V1 −V2

) (
C̃k,0

C̃k,1

)
= ε

(
C̃k,0

C̃k,1

)
, (4.21)

and consequently the corresponding energy levels, with each level being twofold degenerate,
are

ε1,2 = ±
√

V 2
1 + V 2

2 . (4.22)

Therefore, in spite of the non-degenerate spectrum of the Hamiltonian H
(
T (b), τ

(
2π
a

))
for

non-coprime M1 and M2, for the Hamiltonian H
(
T (b), τ ′( 2π

a

))
the energy levels preserve their

degeneracies.

5. Summary and discussion

The main result of our work is a generalization of the Schwinger unitary operator factorization
to non-coprime factorizations. That is, for a composite dimension M = M1M2, we factorize
the U and V operators from equation (1.3) into two pairs of operators (Ũ1, Ṽ1) and (Ũ2, Ṽ2)

(2.8). Each of the pairs generates a complete orthogonal operator basis for the sub-dimensions
M1 and M2, and operators from different bases commute. The factorization enables us to
consider any single physical system with dimension M = M1M2 as a pair of physical systems
in M1- and M2-factorized degrees of freedom, where M1 and M2 are not restricted to be
coprime. Considering factorized operators may simplify various M-dimensional phase space
problems in the same way as the Cooley–Tukey FFT simplifies the application of the DFT.
Moreover, the new factorization deepens our physical intuition. In particular, we applied the
new factorization to a Harper-like Hamiltonian model, and developed an algorithm for energy
spectrum design in this model. Using the algorithm, we can construct a Hamiltonian, which is
a function of the operators (Ũ1, Ṽ1). Therefore, it is designed to obtain M1 energy levels (with
a spectrum determined by Hamiltonian’s details), each level being M2-fold degenerate. The
algorithm of the energy spectrum design can be of interest, for example, in solid state physics
for electrons in a strong magnetic field [14].
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The application of the permutation operator A (which is the key to the solution for the
non-coprime cases) to the kq bases problem generates the kq-like basis which is a MUB to the
original |K,Q〉 basis. This kq-like basis has a different periodicity property than the original
kq bases: it is completely periodic in the coordinate and momentum variables simultaneously.
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